1,756 research outputs found

    Pareto Optimal Matchings in Many-to-Many Markets with Ties

    Get PDF
    We consider Pareto-optimal matchings (POMs) in a many-to-many market of applicants and courses where applicants have preferences, which may include ties, over individual courses and lexicographic preferences over sets of courses. Since this is the most general setting examined so far in the literature, our work unifies and generalizes several known results. Specifically, we characterize POMs and introduce the \emph{Generalized Serial Dictatorship Mechanism with Ties (GSDT)} that effectively handles ties via properties of network flows. We show that GSDT can generate all POMs using different priority orderings over the applicants, but it satisfies truthfulness only for certain such orderings. This shortcoming is not specific to our mechanism; we show that any mechanism generating all POMs in our setting is prone to strategic manipulation. This is in contrast to the one-to-one case (with or without ties), for which truthful mechanisms generating all POMs do exist

    A simple scheme for allocating capital in a foreign exchange proprietary trading firm

    Get PDF
    We present a model of capital allocation in a foreign exchange proprietary trading firm. The owner allocates capital to individual traders, who operate within strict risk limits. Traders specialize in individual currencies, but are given discretion over their choice of trading rule. The owner provides the simple formula that determines position sizes – a formula that does not require estimation of the firm-level covariance matrix. We provide supporting empirical evidence of excess risk-adjusted returns to the firm-level portfolio, and we discuss a modification of the model in which the owner dictates the choice of trading rule

    A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments

    Get PDF
    The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS

    A Naturally Occurring Mutation in ropB Suppresses SpeB Expression and Reduces M1T1 Group A Streptococcal Systemic Virulence

    Get PDF
    Epidemiological studies of group A streptococcus (GAS) have noted an inverse relationship between SpeB expression and invasive disease. However, the role of SpeB in the course of infection is still unclear. In this study we utilize a SpeB-negative M1T1 clinical isolate, 5628, with a naturally occurring mutation in the gene encoding the regulator RopB, to elucidate the role of RopB and SpeB in systemic virulence. Allelic exchange mutagenesis was used to replace the mutated ropB allele in 5628 with the intact allele from the well characterized isolate 5448. The inverse allelic exchange was also performed to replace the intact ropB in 5448 with the mutated allele from 5628. An intact ropB was found to be essential for SpeB expression. While the ropB mutation was shown to have no effect on hemolysis of RBC's, extracellular DNase activity or survival in the presence of neutrophils, strains with the mutated ropB allele were less virulent in murine systemic models of infection. An isogenic SpeB knockout strain containing an intact RopB showed similarly reduced virulence. Microarray analysis found genes of the SpeB operon to be the primary target of RopB regulation. These data show that an intact RopB and efficient SpeB production are necessary for systemic infection with GAS

    The association between leukocytes and sperm quality is concentration dependent

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the association between leukocytes (polymorphonuclear granulocytes -PMNL) and semen parameters at different leukocyte concentrations.</p> <p>Methods</p> <p>This was a retrospective clinical study at a university hospital andrology clinic. Semen samples from infertile men were analyzed for sperm morphology and motility according to seminal leukocytes (PMNL) concentration (category A: >0 to <0.25 × 10(6)/mL; category B: >0.25 to <0.5 × 10(6)/mL; category C: >0.5 to <0.75 × 10(6)/mL; category D: >0.75 to <1.0 × 10(6)/mL, category E: >1 × 10(6)/mL).</p> <p>Results</p> <p>The percentage of sperm with normal morphology increased significantly from category A (14%) to category D (19%) but decreased in category E to levels (14%) similar to those in category A. Motility grades a and a+b (combined) also increased from category A (12%, 20%) to category D (18.0%, 28.5%) and decreased in category E (11%, 20.5%) to levels similar to those in category A. Sperm deformities and motility grades c and d increased progressively in all categories.</p> <p>Summary</p> <p>Leukocytes had a positive association with normal morphology and progressive motility in semen samples at a concentration of 0-1 × 10(6)/mL. The findings suggest that the association between leukocytes (PMNL) and semen quality might be concentration dependent.</p

    Enabling comparative modeling of closely related genomes: Example genus Brucella

    Get PDF
    For many scientific applications, it is highly desirable to be able to compare metabolic models of closely related genomes. In this short report, we attempt to raise awareness to the fact that taking annotated genomes from public repositories and using them for metabolic model reconstructions is far from being trivial due to annotation inconsistencies. We are proposing a protocol for comparative analysis of metabolic models on closely related genomes, using fifteen strains of genus Brucella, which contains pathogens of both humans and livestock. This study lead to the identification and subsequent correction of inconsistent annotations in the SEED database, as well as the identification of 31 biochemical reactions that are common to Brucella, which are not originally identified by automated metabolic reconstructions. We are currently implementing this protocol for improving automated annotations within the SEED database and these improvements have been propagated into PATRIC, Model-SEED, KBase and RAST. This method is an enabling step for the future creation of consistent annotation systems and high-quality model reconstructions that will support in predicting accurate phenotypes such as pathogenicity, media requirements or type of respiration.We thank Jean Jacques Letesson, Maite Iriarte, Stephan Kohler and David O'Callaghan for their input on improving specific annotations. This project has been funded by the United States National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN272200900040C, awarded to BW Sobral, and from the United States National Science Foundation under Grant MCB-1153357, awarded to CS Henry. J.P.F. acknowledges funding from [FRH/BD/70824/2010] of the FCT (Portuguese Foundation for Science and Technology) Ph.D. scholarship
    corecore